Войти
Женская территория
  • Виды мужских стрижек — от древности до наших дней
  • Военные пенсионеры за россию и её вооруженные силы
  • Ишемический инсульт в бассейне задних мозговых артерий Ишемия средней мозговой артерии
  • Как накрутить волосы на термобигуди, используя для создания различных видов кудрей Накрутить волосы на термобигуди
  • Можно ли во время месячных ходить на похороны и кладбище
  • Ретро прически на средние волосы Прическа в стиле ретро на короткие волосы
  • Объем памяти – основная характеристика памяти. Кратковременная память (ВВП) Емкость кратковременной памяти сколько элементов

    Объем памяти – основная характеристика памяти. Кратковременная память (ВВП) Емкость кратковременной памяти сколько элементов

    Кратковременная память позволяет нам выполнять множество разнообразных действий здесь и сейчас. Хозяйка в процессе мытья посуды автоматически запоминает, какие тарелки уже вымыты, а какие еще предстоит потереть намыленной мочалкой. Но помнить об этом всю жизнь или долгие годы совсем не обязательно. Поэтому воспоминания из рабочей ячейки хранилища стираются абсолютно безболезненно для женщины.

    Кратковременная память: что это такое

    Краткосрочная память, которая нужна нам для повседневной, сиюминутной работы – это способность удерживать в сознании информацию, полученную из жизненного опыта, короткое время. Она ограничивается небольшим объемом воспоминаний. Причем эти образы обычно связаны и хранятся в одной ячейке мозга.

    Закон Миллера утверждает, что кратковременная память способна сохранить не больше 7 предметов или слов. Допустимая погрешность – плюс, минус два. Собираясь в магазин, мы легче запомним 5 необходимых продуктов, чем 9. Когда нам понадобиться записать на листочке бумаги список нужных продуктов? Когда их будет больше 5. Это говорит о том, что кратковременные воспоминания очень ограничены.

    Обычно они связаны между собой. В данном примере, это продукты, необходимые для ужина. Вспоминая о том, что сегодня к вам приглашены гости, легко задействовать цепочку длительной памяти и тогда все продукты вплывут в голове, в связи с тем, для какого блюда они предназначены. Теперь их легко перевести в рабочую ячейку и купить.

    Оперативное мышление умеет заглядывать в долговременное хранилище, извлекать оттуда нужную информацию, соединять ее с сиюминутной и принимать правильное решение. В данном примере, хозяйка вспомнила, какое блюдо ей надо приготовить и без списка вспомнила, что надо для этого купить.

    Каждая новая переменная информация, стирает из рабочей памяти ту первую составляющую, которая уже не нужна сию минуту. Оперативная ячейка мышления активно работает во время чтения, рассказа, она отсекает отвлекающую и неверную информацию. Помогает разобраться в текущей реальности.

    Как улучшить кратковременную память

    Как улучшить кратковременную память? Для этого разработаны различные упражнения. Для чего нам нужна объемная рабочая память? Для того, чтобы более успешно решать свои профессиональные и бытовые задачи. В целом, краткосрочной или рабочей ячейкой своих воспоминаний человек пользуется постоянно: когда варит борщ, делает уборку в квартире, разрабатывает чертеж сложной детали.

    Конечно, если в процессе рабочего дня вы пользуетесь большим объемом информации, находящимся под рукой, тем быстрее вы выполняете свои задания. Естественно, если зарплата зависит от количества выполненных заданий, каждый сотрудник будет стремиться выполнять работу быстрее. Большое количество знаний, хранящееся в оперативной ячейке, улучшит выполнение работы, ускорит ее.

    Поэтому даже взрослые люди заинтересованы увеличивать количество своих оперативных знаний.

    Оперативный резервуар знаний помогает нам отсекать ненужную, отвлекающую информацию, фокусировать внимание на выполнении одного дела. Это повышает производительность труда.

    У взрослых людей

    Тренировать способность запоминания взрослым людям можно, не потратив на это лишнего времени. К примеру, достаточно во время длительной поездки в троллейбусе, закрыв глаза, стараться вспомнить, какого цвета шапка у соседа.

    Читать книги, учить стихи, изучать иностранные языки, разгадывать ребусы – все это укрепляет способность запоминать новую информацию. При этом включается не только слуховая память, но и визуальная. Это еще больше усиливает эффект. Ведь известно, что зрительный нерв гораздо толще слухового. Значит в процессе образного мышления принимает участие большее число нейронов.

    Существует специальный тренинг, позволяющий натренировать оперативную память. В процессе тренировки человеку предлагается следить за рядом образов, определяя, какой появился раньше. Улучшение наступит, если ежедневно заниматься по 25 минут.

    У детей (школьников, дошкольников) и подростков

    Ребенку с большим запасом знаний легко учиться и понимать взрослых. Он меньше подвержен стрессам, у него хорошие оценки и довольные родители.

    Как развить у ребенка объемный запас текущих воспоминаний? Все дело в развивающих игрушках и играх. Купите ему современное чудо – конструктор ЛЕГО. Собирая все новые и новые модели машин, самолетов, звездопланов, ребенок учится запоминать текущий творческий процесс и развивает свои ручки.

    Легкая гимнастика с простыми движениями рук и ног, наклоны и приседания включают работу мозга. Упражнения физические и логические улучшают мышление малыша.

    Если с возрастом у мальчика наблюдается ухудшение оперативного запоминания, это следует лечить. Сбоя в учебе можно избежать, если вовремя обратиться к врачу. Часто у мальчиков встречается повышенное внутричерепное давление в возрасте 13-16 лет, по причине слишком быстрого роста.

    Препараты остановят обострение. Подросток быстро восстанавливается, если хорошо питается, достаточное время спит. Он еще успеет натренировать свои способности. Дальнейших расстройств можно избежать, если вести правильный образ жизни: не курить, не пробовать спиртных напитков и читать. Обычное чтение укрепляет образное мышление и увеличивает объем воспоминаний.

    Восстановление памяти у школьника происходит постепенно, если он учит уроки, придерживается правильного режима дня и питания.

    Упражнения для тренировки кратковременной памяти

    Развитие кратковременной памяти важно для человека. Йоги рекомендуют медитировать для того, чтобы понизить кровяное давление, избежать депрессии и укрепить оперативную память. Ученые утверждают, что это происходит по той причине, что в процессе медитации человек фокусируется на одной мысли, отметая другие.

    Достаточно 8 минут медитации в день, чтобы увеличить объем ячейки рабочих воспоминаний.

    Занятия спортом улучшают не только работу всего организма и мышц тела, но и работу мозга, способность запоминать много информации.

    Необходимо спать в сутки не меньше 8 часов. Опыт показывает, что студенты, спящие в сутки 8-9 часов на 60% быстрее и точнее выполняют текущие задания.

    У взрослых людей иногда проявляются симптомы нарушения кратковременной памяти. В этом случае необходимо обратиться к врачу. Если окажется, что человек здоров, ему просто необходимо делать определенные упражнения. Читать вслух прозу, заучивать стихи, громко их декларировать, рассказывать внукам сказки, гулять в саду с детьми и друзьями. Такая тренировка лучшее лечение для мозга и его способностей.

    Изучая новую информацию, систематизируйте ее, читайте в рифму, делите на общие части. Тогда объем запоминающихся моментов увеличится.

    Старайтесь в разговоре употреблять короткие слова. Они запоминаются точнее и лучше. Играть в шашки и уголки, волейбол и теннис очень полезно для развития краткосрочной памяти.

    Раздел 2
    ОПОЗНАНИЕ И ПОЗНАНИЕ

    Объем кратковременной памяти и количество информации

    Проблемы памяти являются традиционным объектом психологического исследования со времен Г. Эббингауза до наших дней. Пожалуй, наибольший интерес к исследованию памяти отмечается в последние два десятилетия, что связано прежде всего с потребностями практики - появлением АСУ и широким распространением операторской деятельности во всех отраслях народного хозяйства. Именно развитие прикладных исследований позволило выделить в памяти стадии кратковременного и долговременного хранения. Исследованию закономерностей кратковременной памяти (КП) уделяется в последние годы наиболее пристальное внимание . Однако, несмотря на пристальный интерес к изучению КП, у исследователей нет согласия по многим вопросам, касающимся ее характеристик и закономерностей. В частности, дискуссионными являются вопросы об объеме кратковременного хранения, о функциональной структуре КП и оперативных единицах памяти.

    Одной из важнейших характеристик кратковременной памяти является стабильность ее объема: в соответствии с данными Дж. Миллера и результатами исследования П.Б. Невельского , объем КП является величиной относительно постоянной и не зависит от количества информации на стимул . Мы полагаем, что данное утверждение нуждается в экспериментальной проверке в связи с проблемой многомерного кодирования информации. Использование принципа многомерного кодирования позволяет при одной и той же длине сообщения существенно варьировать количество передаваемой информации путем изменения мерности стимулов и способствует увеличению пропускной способности человека. Однако проблема многомерного кодирования разработана достаточно широко лишь в отношении перцептивных процессов . Закономерности процессов памяти при приеме и переработке многомерных сигналов практически не изучены. В связи с этим возникает важный в теоретическом и практическом отношении вопрос: изменяется ли объем КП с изменением мерности сигналов.

    Цель данного исследования состояла в выявлении некоторых закономерностей обработки алфавитов многомерных сигналов и КП.

    В исследовании решались следующие задачи:

    1. Проверить гипотезу о зависимости объема КП в символах от мерности алфавитов, т.е. от количества информации на стимул .
    2. Исследовать влияние избыточности сообщений на эффективность удержания материала в КП.
    3. Выявить характер оперативных единиц памяти при запоминании многомерных зрительных стимулов.

    В качестве основного методологического принципа исследования использовался подход, сложившийся в рамках советской психологической школы, исходным принципом которого является понимание памяти как деятельности. Сочетание этого подхода с информационным подходом и использованием методов микроструктурного анализа кратковременных процессов, на наш взгляд, весьма плодотворно для решения многих проблем психологии памяти, в частности, вопросов о функциональной структуре памяти, об оперативных единицах памяти на разных уровнях обработки информации, об объеме КП.

    МЕТОДИКА ИССЛЕДОВАНИЯ

    В эксперименте использовался классический метод измерения объема кратковременной памяти . В качестве материала исследования были использованы девять алфавитов стимулов, составленных путем сочетания трех перцептивных категорий: формы, цвета и пространственной ориентации стимулов. Длина трех одномерных алфавитов была одинаковой и равнялась четырем. Кроме того, использовались четыре алфавита двумерных стимулов, полученных объединением параметров цвета и формы, а также формы и ориентации. Сочетания этих параметров в стимулах в двух алфавитах были скоррелированными (т.е. параметр одной категории сочетался со строго определенным параметром другой категории), а в двух других - некоррелированными (параметры обеих категорий сочетались случайным образом). Длина двумерных скоррелированных алфавитов равнялась четырем стимулам, длине нескоррелированных - 16. И, наконец, использовались два алфавита трехмерных стимулов, в которых сочетались три параметра: форма, цвет и пространственная ориентация. Длина трехмерного скоррелированного алфавита равнялась четырем, а нескоррелированного - 64 стимулам.

    Стимулы каждого из алфавитов объединялись в случайном порядке в ряды различного объема. Объем рядов варьировался от 4 до 10 стимулов для одномерных алфавитов и от 2 до 10 - для многомерных. Стимульные ряды в экспериментах предъявлялись на экране симультанно при постоянном времени экспозиции, равном 5с. После окончания экспозиции испытуемый должен был вслух воспроизвести удержанный материал. При воспроизведении необходимо было называть стимулы в порядке их расположения в рядах.

    При обработке полученных данных определялись количество правильно воспроизведенных элементов и объем КП.

    С целью проведения информационного анализа данных рассчитывалась информационная нагрузка для рядов различного объема, составленных из алфавитов разной мерности и структуры.

    ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

    С увеличением мерности алфавита объем КП в символах для нескоррелированных алфавитов снижается. Для скоррелированных многомерных алфавитов значения объема КП по существу не отличаются от соответствующих значений, полученных для одномерных алфавитов. С увеличением мерности алфавитов уменьшается и предельная длина ряда, при которой ряд не воспроизводится вообще. Таким пределом одномерных и многомерных скоррелированных алфавитов является ряд из 10 стимулов, для двумерных - ряд из 7 и для трехмерного алфавита - ряд из 5 стимулов.

    Для ответа на вопрос о том, какими кодами оперируют испытуемые в процессе запоминания - зрительными или вербальными, - мы обратились к анализу словесных отчетов испытуемых. Проведенный анализ показал большое разнообразие приемов, применяемых испытуемыми при запоминании рядов многомерных стимулов. Более того, практически на протяжении всех четырех опытов испытуемые продолжают активный поиск новых приемов, которые позволили бы активизировать процесс переработки поступающей информации. Конкретные приемы, применяемые испытуемыми в процессе запоминания, разнообразны и индивидуально специфичны, однако отмечаются и общие тенденции. Так, для всех девяти алфавитов в качестве одного из средств запоминания ряда используется вербализация. Однако при большой длине ряда и с увеличением мерности алфавита вербализация становится малоэффективным средством, и испытуемые переходят к оперированию зрительным кодом. При этом преобладающей деятельностью испытуемых является перцептивная организация материала с целью более эффективного его запоминания.

    Поскольку анализ словесных отчетов позволил установить, что испытуемые оперируют в процессе запоминания преимущественно зрительным кодом, предстояло установить, являются ли оперативные единицы памяти целостными многомерными эталонами, или же осуществляется вычленение в структуре многомерных стимулов отдельных перцептивных категорий. Для ответа на этот вопрос мы обратились к анализу ошибок, допущенных испытуемыми в процессе воспроизведения ряда многомерных стимулов. При проведении такого анализа мы дифференцировали четыре типа ошибок: пропуск отдельных элементов ряда, пропуск отдельных перцептивных категорий в структуре многомерного стимула, транспозицию (перестановку) расположенных рядом стимулов, транспозицию отдельных перцептивных категорий в структуре расположенных рядом стимулов (частичная транспозиция).

    Проведенный анализ показал, что для нескоррелированных алфавитов общее число ошибочно воспроизведенных элементов (включая ошибки полного невоспроизведения) примерно в три раза больше, чем для скоррелированных (табл.1). При этом третью часть ошибок для нескоррелированных алфавитов составляют ошибки частичного невоспроизведения, в то время как для скоррелированных алфавитов таких ошибок практически не выявлено. Количественный анализ ошибок последних двух типов показал, что при воспроизведении многомерных скоррелированных алфавитов ошибки полной транспозиции являются преобладающими, при этом не зарегистрировано ни одной ошибки частичной транспозиции. Этот результат можно объяснить тем, что при запоминании рядов, составленных из избыточных (скоррелированных) алфавитов, испытуемые оперируют целостными зрительными эталонами. Для нескоррелированных алфавитов удельный вес ошибок полной транспозиции очень невелик - в среднем 4,8% от общего числа ошибок воспроизведения, зато существенно возрастает число ошибок частичной транспозиции - в среднем 20,2%. Большой процент ошибок частичной перестановки параметров многомерных нескоррелированных стимулов свидетельствует о том, что в процессе запоминания этих рядов осуществляется их перцептивная организация в соответствии с динамикой отдельных параметров, и испытуемые прибегают к раздельному запоминанию параметров стимулов, удерживая одни из них в вербальной, а другие - в зрительной форме.

    По мере увеличения нагрузки на входе активно включаются различные способы кодирования и сохранения информации: зрительное, иногда даже двигательное кодирование, вербализация, являющиеся в данном случае как бы «резервами» кратковременной памяти. Факты, подтверждающие это предположение, можно найти и при анализе данных запоминания одномерных и скоррелированных алфавитов. Испытуемые при предъявлении рядов большой длины, составленных из этих алфавитов, утверждали, что несколько первых элементов ряда (3-5) обычно вербализуются, а следующие несколько элементов удерживаются в виде зрительного образа.

    Таблица 1. Абсолютные и относительные показатели ошибок воспроизведения для многомерных алфавитов

    Алфавиты Общее кол-во невоспроизведенных стимулов Частично невоспроизведенных стимулов, % Полностью невоспроизведенных стимулов, % Общее кол-во ошибок воспроизведения Ошибок полной транспозиции, % Ошибок частичной транспозиции, %
    Скоррелл.
    ф-ц 339 1,1 98,82 339 67,25 0
    ф-о 555 0 100 269 59,5 0
    ф-ц-о 460 0,86 99,1 326 71,5 0
    Нескорр.
    ф-ц 1276 31,97 68,02 748 5,7 28,74
    ф-о 1399 25,16 74,83 659 3,03 13,5
    ф-ц-о 1891 30,46 69,5 870 5,6 18,39

    Очевидно, порядок использования различных кодов при удерживании материала в кратковременной памяти является не строго регламентированным, а определяется как объективными условиями, в которых протекает мнемическая деятельность (особенности стимульного материала, время предъявления материала, количество информации, содержащейся в стимулах), так и индивидуальными особенностями испытуемых.

    ИНФОРМАЦИОННЫЙ АНАЛИЗ ЭКСПЕРИМЕНТАЛЬНЫХ ДАННЫХ

    В контексте нашего исследования была поставлена задача установить, зависит ли объем КП, исчисляемый в информационных мерах, от количества информации в предъявленном материале и каковы предельные возможности хранения информации в КП при оперировании кодами различной мерности.

    При сопоставлении для алфавитов различной мерности объема КП, выраженного в символах и двоичных единицах, отчетливо выявляется разнонаправленность в динамике этих показателей с изменением мерности алфавитов: объем КП в символах падает, а объем КП в двоичных единицах, напротив, возрастает (табл.2).

    Таблица 2. Зависимость объема КП, измеренного в символах, числом параметров и в двоичных единицах от мерности и вида алфавита

    Алфавиты Объем
    в символах в параметрах в дв. ед.
    Форма 7,34 7,3 12,05
    Цвет 7,17 7,1 11,78
    Ориентация 6,25 6,2 10,32
    Форма-цвет, скоррел. 6,96 13,8 11,45
    Форма-цвет, нескоррелл. 4,35 8,7 17,09
    Форма-ориентация, скоррел. 6,79 13,5 11,18
    Форма-ориентация, нескоррел. 3,98 7,8 15,64
    Форма-цвет-ориент., скоррел. 6,75 13,5 11,11
    Форма-цвет-ориент., нескоррел. 3,5 10,5 15,79

    С изменением мерности алфавита от одномерного до трехмерного объем КП в символах колеблется в пределах 5±2. Объем КП в двоичных единицах при этом изменяется от 11 до 17 дв. ед.

    В соответствии с данными Дж. Миллера и П.Б. Невельского , при изменении количества информации на символ объем КП близок к инварианту, если измерять его в символах, а не в информационных мерах. В нашем исследовании, при работе с одномерными и многомерными алфавитами зрительных стимулов, это положение не подтвердилось. С увеличением алфавита от одно- до трехмерного объем КП в символах уменьшается на 100% (от 7 до 3,5 символа), а объем КП в информационных мерах возрастает на 40% (в среднем от 11,4 до 15,8 дв. ед.). Таким образом, при изменении мерности алфавитов объем КП более близок к инварианту, если измерять его не числом символов, а в двоичных единицах. Количество переданной информации для двумерных и трехмерного скоррелированных алфавитов по существу не отличается от соответствующих показателей, полученных для одномерных алфавитов.

    Анализ зависимости количества переданной информации от длины ряда показал, что наибольшее количество информации для одномерных алфавитов передается при длине ряда стимулов, равной 5-6 элементам, и составляет 7 дв. ед. При запоминании рядов двумерных нескоррелированных стимулов количество переданной информации резко падает с увеличением длины ряда свыше четырех стимулов. Для двумерных алфавитов это критическая длина ряда, при которой достигается максимальный объем переданной информации, составляющий 10,5 дв. ед. Наконец, при работе с трехмерным нескоррелированным алфавитом критической длиной стимульного ряда является ряд из трех стимулов, при котором обеспечивается максимальный объем переданной информации - 13,7 дв. ед.

    Сопоставляя полученные для алфавитов различной мерности критические значения длины ряда, при которых достигается максимальный уровень переданной информации, следует учитывать, что с увеличением мерности алфавита соответственно, растет и число параметров стимула, которыми оперируют в процессе запоминания испытуемые. Критический объем запоминаемого материала, при котором достигается максимальный уровень переданной информации, измеряемый числом правильно воспроизведенных параметров стимулов, составляет:

    • для одномерных алфавитов - 5-6,
    • для двумерных алфавитов - 4Ч2=8,
    • для трехмерного алфавита - 3Ч3=9.

    Таким образом, анализ способов перцептивной и мнемической организации запоминаемого материала позволяет установить установить, что при работе с одномерными и многомерными алфавитами зрительных стимулов объем КП, измеряемый числом параметров, которыми оперирует испытуемый, колеблется в установленных Дж. Миллером пределах 7(2.

    ВЫВОДЫ.

    1. Объем КП для использованных в исследовании одномерных алфавитов варьирует несущественно. Несколько более низкие показатели объема КП для алфавита «пространственная ориентация» могут быть объяснены трудностью усвоения искусственной системы кодирования, выбранной для этого признака.
    2. С увеличением мерности алфавита от одномерного до трехмерного объем КП, выраженный в символах, уменьшается вдвое, объем КП, выраженный в двоичных единицах, напротив, возрастает.
    3. При изменении мерности алфавитов объем КП более близок к инварианту, если измерять его не числом символов (в соответствии с данными Дж. Миллера и П.Б. Невельского), а в двоичных единицах.
    4. избыточность признаков кодового алфавита (т.е. наличие в нем скоррелированных параметров) нецелесообразно, т.к. не способствует увеличению продуктивности запоминания и приводит к незначительному снижению объема КП (в символах и двоичных единицах) по сравнению с одномерными алфавитами.
    5. Критическая длина ряда, при которой достигается максимальный уровень переданной информации, составляет для одномерных алфавитов 5-6 символов, для двумерных - 4 и трехмерных - 3 символа. Но при этом количество переданной информации гораздо выше для многомерных алфавитов.
    6. При оперировании многомерными алфавитами в КП вербальное описание играет вспомогательную роль. Основным средством запоминания является перцептивная организация материала и оперирование зрительными кодами.
    7. В процессе кратковременного запоминания многомерных визуальных стимулов испытуемые не оперируют целостными образами, а вычленяют в структуре многомерных сигналов отдельные параметры. При этом объем КП, измеряемый числом параметров стимулов, подлежащих запоминанию, измеряется числом 7±2, а объем КП, измеряемый числом целостных стимулов, колеблется в пределах 5±2.

    Результаты исследования позволяют предположить, что кратковременная память обладает подвижной системой различных кодов: вербальных, зрительных, двигательных, семантических. Преимущественное использование одного из этих кодов при запоминании и сохранении того или иного материала определяется объективными условиями деятельности и индивидуальными особенностями субъектов деятельности. Возможно, что в экстремальных условиях деятельности (жесткий временной режим, большое количество информации на входе) процесс переработки информации осуществляется с использованием различных кодов. Таким образом, различные коды кратковременной памяти могут служить своеобразным «стратегическим резервом» в сложных условиях деятельности. Можно предположить также, что сформированность, гибкость системы кодов кратковременной памяти, возможность быстрого перехода от одного кода к другому (или другим) определяют уровень эффективности функционирования кратковременной памяти и индивидуальные различия в ее характеристиках.

    ЛИТЕРАТУРА

    1. Миллер Дж. Магическое число семь, плюс или минус два. О некоторых пределах нашей способности перерабатывать информацию // В кн.: Инженерная психология. - М.: Прогресс, 1964.
    2. Невельский П.Б. Объем памяти и количество информации // В кн.: Проблемы инженерной психологии. - Л.: Изд. - ЛГУ, 1965. - Вып.3.
    3. Зинченко Т.П. Опознание и кодирование. - Л.: Изд-во ЛГУ, 1981.
    4. Зинченко Т.П. Методы исследования и практические занятия по психологии памяти. - Душанбе, 1974.

    Рассмотрим подробнее кратковременную и долговременную память.

    Как уже было сказано выше, в кратковременной памяти сохранение материала ограничено определенным, небольшим периодом времени. Кратковременная память человека связана с его актуальным сознанием.

    Долговременная память рассчитана на длительное хранение информации; она не связана с актуальным сознанием человека и предполагает его способность в нужный момент вспомнить то, что когда-то было им запомнено. В отличие от КП, где припоминание не требуется (поскольку то, что было воспринято, еще находится в актуальном сознании), при ДП оно необходимо всегда, т.к. связанные с восприятием сведения уже не находятся в сфере актуального сознания.

    При пользовании ДП для припоминания нередко требуются определенные волевые усилия, поэтому ее функционирование обычно связано с волей.

    Для поддержания информации в кратковременной памяти всегда требуется поддержание непрерывного внимания к запоминаемому материалу в течение всего времени его удержания в памяти; при долговременном запоминании в этом нет необходимости.

    Одним из возможных механизмов кратковременного запоминания является временное кодирование, т.е. отражение запоминаемого в виде определенных, последовательно расположенных символов в слуховой и зрительной системах человека. Часто, для того чтобы нечто действительно запомнилось, стараются по ассоциации с ним вызвать определенную эмоциональную реакцию. Такую реакцию можно рассматривать как особый психофизический механизм, способствующий активизации и интеграции процессов, служащих средством запоминания и воспроизведения.

    Рассмотрим основные характеристики кратковременной памяти. Как уже говорилось ее средний объем ограничен 7±2 единицами интегрированной информации. Этот объем индивидуален, он характеризут природную память человека и имеет тенденцию сохранятся в течение всей жизни. Им в первую очередь определяется объем механической памяти, которая функционирует без активного включения мышления в процесс запоминания.

    С особенностями КП, обусловленными ограниченностью ее объема, связано такое свойство, как замещение. Оно проявляется в том, что при переполнении индивидуального устойчивого объема кратковременной памяти человека вновь поступающая в нее информация частично вытесняет уже храняющуюся там. Субъективно это может проявляться, например, в непроизвольном переключении внимания человека с запоминания на что-либо другое.

    Кратковременная память играет в жизни человека большую роль. Благодаря ей перерабатывается самый значительный объем информации, отсеивается ненужная и в результате не происходит перегрузки долговременной памяти излишними сведениями. КП имеет большое значение для организации мышления; его материалом, как правило, являются факты, находящиеся в КП человека.

    Этот вид памяти активно работает и в процессе общения человека с человеком. Установлено, что когда впервые встретившихся людей просят рассказать о своих впечатлениях о друг друге, описать те личностные особенности, которые они во время встречи друг и друга заметили, то в среднем называется, как правило, то количество черт, которое соответствует объему КП, т.е. 7±2.

    Без КП невозможно нормальное функционирование долговременной памяти. В последнюю может проникнуть и надолго отложиться только то, что когда-то было в КП. Иначе говоря, КП выступает в роли своеобразного фильтра, который пропускает нужную информацию в ДП, одновременно осуществляя в ней строгий отбор.

    Одно из главных свойств КП состоит в том, что этот вид памяти при определенном условии тоже не имеет временных границ. Это условие состоит в возможности непрерывно повторять ряд только что прослушанных слов, цифр и т.п. Для поддержания информации в КП необходимо поддержание активности, направленной на запоминание, без отвлечения внимания на другой вид деятельности, сложной умственной работы.

    Клинические исследования, связанные с нарушениями памяти, показывают, что два вида памяти - КП и ДП - действительно существуют как относительно независимые. К примеру, при таком нарушении, которое именуется ретроградная амнезия, страдает в основном память на недавно происшедшие события, но сохраняются воспоминания тех событий, которые имели место в далеком прошлом. При другом виде заболевания - антероградной амнезии - сохраненной остается и КП, и ДП. Однако при этом страдает способность ввода новой информации в ДП.

    Вместе с тем оба вида памяти взаимосвязаны и работают как единая система. Одна из концепций, показывающая их совместную работу, разработана американскими учеными Р.Аткинсоном и Р.Шифрином. Она схематически представлена на рис.2

    Рис. 2.

    В соответствии с этой теорией ДП представляет практически неограниченный по объему, но ограниченный по возможност произвольного припоминания хранящихся в ней сведений. Кроме того, для того, чтобы информация попала в хранилище ДП необходимо, чтобы над ней была произведена определенная работа еще в то время, когда на находится в КП.

    Во многих жизненных ситуациях процессы КП и ДП работают практически параллельно. Например, когда человек ставит перед собой задачу запомнить что-либо такое, что заведомо превосходит возможности его КП, он часто сознательно или бессознательно прибегает к приему смысловой группировки материала, которое облегчает ему запоминание. Такая группировка в свою очередь предполагает использование ДП, обращение к прошлому опыту, извлечение из него необходимых для обобщения знаний и понятий, способов группирования запоминаемого материала, сведения его к числу смысловых единиц, не превышающих объема КП.

    Перевод информации из КП в ДП обычно вызывает затруднения, т.к., для того чтобы это сделать, нужно осмыслить и определенным образом структурировать, связать в воображении новые сведения с теми, которые уже хранятся в ДП. Но есть уникальные случаи, когда это делается человеком сравнительно легко. Один из таких случаев был описан А.Р. Лурией в его работе "Маленькая книжка о большой памяти". Были обследованы особенности памяти некоего Ш., и было выяснено, что "ему было безразлично, предъявлялись ли ему осмысленные слова, бессмысленные слоги, числа или звуки, давались ли они в устной или в письменной форме; ему нужно было лишь, чтобы один элемент прелагаемого ряда был отделен от другого паузой в 2-3 секунды".

    Как было выяснено впоследствии, механизм памяти Ш. был основан на эйдетическом зрении, которое у него было особенно развито. После предъявления материала Ш. продолжал его видеть в отсутствие самого материала и был способен восстановить в деталях соответствующий зрительный образ спустя много времени (некоторые опыты повторялись через 15-16 лет). Для обычного человека как раз этот пункт припоминания обычно составляет проблему.

    Рассмотрим теперь особенности и механизмы работы ДП. Она обычно включается в дело не сразу после того, как был воспринят материал, а спустя, по крайней мере, несколько минут. При переводе информации из КП в ДП она обычно еще раз перекодируется и включается в смысловые структуры и связи, уже имеющиеся в ДП. В отличие от КП в долговременной этот процесс является ни слуховым, ни зрительным. Он, скорее, основан на мышлении, на сознательном придании запоминаемому определенного, известного запоминающему смыслового значения. Т.о., ДП имеет смысловую организацию.

    Существенную роль в ДП играет речь. То, что можно выразить словами, обычно запоминается легче и лучше, чем то, что может быть воспринято только зрительно или на слух. При этом если слова выступают не просто как вербальная замена запоминаемого материала, а выступают результатом его осмысления, то такое является наиболее продуктивным.

    Сохранение и припоминание как мнемические процессы имеют свои особенности. Плохая память человека может быть связана с трудностями припоминания, а не запоминания как такового. Трудности, возникающие при припоминании, связаны зачастую с тем, что в нужный момент времени под рукой не оказалось необходимого стимула-средства для припоминания. Чем богаче стимулы-средства, которыми человек располагает для запоминания, тем более они доступны для него в нужный момент времени, тем лучше произвольное припоминание. Два фактора при этом повышают вероятность успешного припоминания: правильная организация запоминаемой информации и воссоздание условий, идентичных условиям, при которых происходило запоминание материала.

    Один из эффективных способов структурирования запоминания - это придание запоминаемому материалу структуры типа "дерево". В такой структуре на самой вершине находится ключевое слово, передающее самый общий смысл текста. Ниже расположены ключевые слова, передающие смысл отдельных частей текста. Затем ключевые слова, передающие смысл отдельных предложений. В самом низу структуры располагается собственно запоминаемый текст. Для припоминания текста достаточно вначале придумать "верхнее" ключевое слово, и двигаясь затем на более низкие уровни структуры вспомнить весь текст целиком.

    Эффективность припоминания иногда снижает интерференция, т.е. смешение одних материалов с другими, одних схем припоминания с иными, связанными совсем с другими материалами. Чаще всего интерференция возникает тогда, когда одни и те же воспоминания ассоциируются в памяти с одинаковыми событиями и их появление в сознании порождает одновременное припоминание конкурирующих (интерферирующих) событий.

    На воспоминание материала влияют и связанные с ним эмоции, причем в зависимости от специфики ассоциированных с памятью эмоциональных переживаний это влияние может проявляться по разному. Чем ярче эмоции, связанные с событием, тем проще припоминание. Положительные эмоции, как правило, способствуют припоминанию, а отрицательные препятствуют. Экспериментально доказано, что искусственное воссоздание при припоминании эмоциональных состояний, сопутствующих моменту запоминания, улучшает память.

    Для долговременной памяти с сознательным доступом свойственна закономерность забывания: забывается все ненужное, второстепенное, а также определенный процент и нужной информации.

    Для уменьшения забывания необходимо:

    1) понимание, осмысление информации (механически выученная, но непонятая до конца информация забывается быстро и почти полностью -- кривая 1 на графике);

    2) повторение информации (первое повторение нужно через 40 минут после заучивания, т. к. через час в памяти остается только 50% механически заученной информации).

    Необходимо чаще повторять в первые дни после заучивания, т. к. в эти дни максимальны потери от забывания, лучше так: в первый день -- 2--3 повторения, во второй день -- 1--2 повторения, в третий -- седьмой день по 1 повторению, затем 1 повторение с интервалом в 7--10 дней. 30 повторений в течение месяца эффективнее, чем 100 повторений за день. Поэтому систематическая, без перегрузки учеба, заучивание маленькими порциями в течение семестра с периодическими повторениями через 10 дней намного эффективнее, чем концентрированное заучивание большого объема информации в сжатые сроки сессии, вызывающее умственную и психическую перегрузку и почти полное забывание информации через неделю после сессии.


    Рис. 3. Кривая забывания Эббингауза: а) бессмысленный материал; б) логическая обработка; в) при повторении

    Забывание в значительной степени зависит от характера деятельности, непосредственно предшествующей запоминанию и происходящей после нее. Отрицательное влияние предшествующей запоминанию деятельности получило название проактивного торможения. Отрицательное влияние следующей за запоминанием деятельности называют ретроактивное торможение, оно особенно ярко проявляется в тех случаях, когда вслед за заучиванием выполняется сходная с ним деятельность или если эта деятельность требует значительных усилий.

    Как уже указывалось, кратковременная память характеризуется, во-первых, немедленным запоминанием, запоминанием с первого раза, после одного и очень краткого предъявления информации и, во-вторых, немедленным воспроизведением и очень кратким сохранением. Можно сказать, что сохранение здесь происходит в процессе запоминания и воспроизведения. Долговременная память отличается от кратковременной, во-первых, длительным запоминанием, неоднократным повторением и воспроизведением запоминаемой информации и, во-вторых, длительным ее сохранением.

    Под объемом кратковременной, «непосредственной», немедленной памяти понимают «число единиц, которое может быть заучено в течение одной пробы при последовательном предъявлении этих единиц в определенном порядке» . Это наибольшее число единиц запоминаемого материала, которое может быть сразу воспроизведено при одном повторении. Измеряется объем памяти числом запомнившихся символов или числом единиц информации, которую содержат эти символы.

    Объем памяти можно сравнить с тем, что в восприятии сейчас принято называть объемом абсолютной оценки или абсолютного суждения, представляющим предел той точности, с которой мы можем абсолютно, т. е. не прибегая к сравнению с эталоном, различать величину стимульной переменной. Для одномерных оценок этот предел равен 7 ± 2. Экспериментальная методика определения объема абсолютного суждения заключается в том, что наблюдателю предъявляется один стимул и предлагается назвать его немедленно после предъявления.

    Методика определения объема кратковременной памяти отличается тем, что испытуемому предъявляется не один стимул, а последовательность нескольких стимулов (символов, сигналов), и он должен дать ответ в конце этой последовательности.

    Объем кратковременной памяти человека очень ограничен. Число единиц, которое человек может запомнить и воспроизвести сразу же после последовательного предъявления этих единиц в определенном порядке, очень невелико. Наибольшее число единиц запоминаемого материала, которое может быть сразу же воспроизведено при одном повторении, по данным Дж. А. Миллера, составляет всего 7 ± 2: 9 двоичных символов 8 десятичных цифр, 7 букв латинского алфавита или 5 односложных английских слов; длина алфавита этих символов соответственно равняется: 2, 10, 26, 1000 символов, что соответствует 1, 3,3, 4,7 и 10 двоичных единиц на символ, или 9, 26, 33 и 50 двоичных единиц во всей последовательности символов. С изменением информации на символ на входе в 10 раз объем кратковременной памяти в символах изменяется в 1,8 раза, а объем в двоичных единицах в 5,5 раза.

    Итак, опыты показали, что объем кратковременной памяти примерно равен объему абсолютного суждения, т. е. около семи символов. Однако это сходство лишь внешнее. Семь символов в объеме абсолютного суждения - это не число опознаваемых символов, так как предъявляется только один символ. Объем абсолютного суждения - это длина алфавита символов, из которого был отобран этот один предъявленный и опознанный символ. Объем кратковременной памяти, наоборот, представляет именно число предъявленных и запоминаемых символов, которые могут быть отобраны из равных по длине алфавитов.

    Объем кратковременной памяти более близок к инварианту, если измерять его числом символов, длиной последовательности символов, а не длиной алфавита или количеством информации. Правда, независимость объема кратковременной памяти от количества информации является относительной, но по сравнению с изменением количества информации на символ и длины ряда символов, изменение объема памяти в символах незначительно. В опытах по запоминанию символов с очень различным количеством информации объем кратковременной памяти равнялся соответственно 12, 8, 4 и 3 символам или 6, 8, 27 и 60 дв. ед. Хотя объем памяти в символах и варьировался в больших пределах (больших чем 7 ± 2), но все же оставался более близким к инварианту, чем объем памяти при исчислении его в двоичных единицах. С изменением информации на входе человеческого канала в 40 раз (с 0,5 до 20 дв. ед.) число символов на выходе изменялось всего в 4 раза (с 12 до 3 символов). Это говорит о том, что основная закономерность объема кратковременной памяти, инвариантность его при измерении числом символов, проявляется даже при очень большом изменении информации на символ, но оценка объема кратковременной памяти «магическим числом семь» является справедливой только для случаев, когда информация на символ на входе находится в пределах от 1 до 10 дв. ед. .

    Необходимо заметить, что средние оценки объема кратковременной памяти, которые обычно производятся в экспериментально-психологической литературе, для практических целей следует считать завышенными, так как указанный объем памяти наблюдается не всегда, а только в 50% случаев. Если под объемом кратковременной памяти понимать число символов, которое может быть воспроизведено с первого раза в подавляющем большинстве опытов, то оказывается, что объем кратковременной памяти - намного меньше и еще более близок к инварианту. Вот как это выглядит по данным приведенных выше опытов:

    Информация на символ в двоичных единицах 0,5 1 7 20

    Число символов, которое человек в среднем

    может воспроизвести с первого раза

    в 50 % случаев 12 8 4 3

    в 90 % случаев 5 5 3 2

    Указанные в последней строке цифры являются более надежными с точки зрения деятельности оператора.

    Рассмотренные закономерности объема кратковременной памяти нужно учитывать, когда необходимо повысить его информационное содержание. Информацию, которая поступает к оператору и которая должна фиксироваться в его кратковременной памяти, необходимо кодировать самыми емкими символами, содержащими большое количество информации и отобранными из больших по длине алфавитов. Поэтому двоичный код менее всего приспособлен к возможностям кратковременной памяти человека. Однако применение длинных алфавитов имеет смысл только в том случае, если эти алфавиты хорошо усвоены оператором. Поэтому нужно применять алфавиты, хорошо известные каждому грамотному человеку (цифры, числа, буквы, слоги, слова), либо специально обучать оператора новым алфавитам.

    Объем зрительной кратковременной памяти в отличие от рассмотренного выше объема слуховой памяти обладает рядом специфических особенностей. При исследовании его по традиционной тахистоскопической методике он ограничен 4-6 символами.

    По-новому к изучению объема кратковременной памяти подошел Дж. Сперлинг. Под объемом кратковременной памяти он понимал то, что обычно называют объемом внимания или объемом симультанного восприятия, т. е. число единиц, которое можно назвать сразу же после кратковременного визуального предъявления. В одном из экспериментов Дж. Сперлинг обнаружил, что объем кратковременной памяти является постоянным для Каждого испытуемого, в среднем составляет 4,3 символа и почти не зависит от характера символов. Если предъявлялось 4 или менее символов, воспроизведение было правильным почти на 100%. Изменение экспозиции от 15 до 500 мсек на объем памяти не влияло. В другом эксперименте Дж. Сперлинг показал, что зрительный образ, сохраняющийся на короткое время после окончания экспозиции и представляющий быстро стирающийся след памяти, человек может использовать для отчета. С помощью методики послестимульной инструкции Дж. Сперлинг установил, что непосредственно за экспозицией, которая продолжалась 50 мсек, объем памяти составляет 9,1 символа, но с задержкой воспроизведения быстро уменьшается: через 1 сек он уже равен 4,3 символа. Это значит, что объем сохранения в течение первой секунды после восприятия значительно больше объема воспроизведения. Сравнивая слуховую память со зрительной, Дж. Сперлинг установил, что след слуховой памяти стирается медленней и что это, возможно, объясняется повторением .

    Н. Ю. Вергилес и В. П Зинченко предположили, что теоретически не должно существовать ограничений объема зрительной памяти; эти ограничения должны быть связаны лишь с разрешающей способностью сетчатки и явлением иррадиации; сетчатка должна хранить всю предъявленную информацию и время хранения должно быть пропорционально логарифму яркости. Проведенный авторами анализ методов послестимульной инструкции и определения отсутствующего члена показал, что действительный объем памяти и здесь остается невыявленным. Для более полного выявления объема кратковременной памяти Вергулес и Зинченко использовали методику стабилизации изображения относительно сетчатки, которая позволила имитировать процесс длительного подпорогового накопления информации. По этой методике испытуемый до исчезновения послеобраза успевал считывать 10-15 цифр, что вдвое превышает объем памяти, полученный в тахистоскопических опытах.

    Методика частичного воспроизведения, аналогичная методике Сперлинга (испытуемых при этом просили считывать цифры с разных участков таблицы), показала, что испытуемые на короткое время запоминают все тестовое поле, составленное из 36 символов, если это поле стабилизировалось относительно сетчатки. В обычных условиях свободного рассматривания объем зрительной памяти значительно ниже, что объясняется стиранием послеобраза новыми символами, которое происходит при смене точек фиксации глаза. Движения глаза необходимы для съема информации, накопленной сетчаткой, отбора полезной информации и передачи ее в оперативную память. Однако в оперативную память из зрительной кратковременной памяти поступает лишь небольшая часть полезной информации, которая связана с задачей деятельности .

    Опыты также показали, что повышение объема кратковременной памяти требует длительной тренировки, в процессе которой совершенствуются способы перекодирования зрительной информации в слуховую, и что латентное время запоминания, по-видимому, может служить показателем сложности процесса такого перекодирования .

    Кратковременная память содержит воспоминания, хранящиеся лишь в течение нескольких секунд. Однако даже в тех ситуациях, когда нам нужно запомнить информацию лишь на короткое время, процесс запоминания включает три стадии: кодирование, хранение и извлечение. Давайте более детально рассмотрим каждую из этих трех стадий по отношению к рабочей памяти.

    Кодирование

    Чтобы закодировать информацию в кратковременной памяти, надо сосредоточить на ней внимание. Поскольку мы избирательно направляем внимание (см. главу 5), в кратковременной памяти будет содержаться только отобранный материал. Это означает, что многое из того, что воздействует на человека, никогда не попадет в кратковременную память и, конечно, не будет доступно для последующего воспроизведения. Действительно, многие трудности, обозначаемые общим термином «проблемы с памятью», на самом деле связаны с ослаблением внимания. Если, например, вы покупаете что-то в бакалее и кто-то позднее спрашивает вас, какого цвета были глаза у продавщицы, вы не сможете ответить, но не потому, что подвела память, а прежде всего потому, что вы не обратили внимания на ее глаза.

    Фонологическое (акустическое) кодирование

    При кодировании запоминаемой информации она переводится в определенный код, или репрезентацию. Например, когда вы находите нужный номер телефона и держите его в памяти, пока не закончится набор, в каком виде вы представляете себе цифры? Является ли такая репрезентация зрительной - мысленным изображением цифр? Является ли она акустической - звучащими названиями цифр? Или она семантическая (основанная на значениях) и содержит некоторые значимые ассоциации с цифрами? Исследования показывают, что для кодирования информации в кратковременной памяти мы можем использовать любую из этих возможностей, но предпочитаем акустический код и, пытаясь удержать информацию в активном состоянии, повторяем ее, т. е. повторяем ее про себя снова и снова. Повторение - наиболее популярный прием, когда информация состоит из вербальных элементов - цифр, букв или слов.

    Так, пытаясь запомнить номер телефона, мы чаще всего кодируем это число в виде звучащих названий цифр и повторяем эти звуки про себя, пока не наберем номер.

    В классическом эксперименте, подтвердившем использование акустического кода, испытуемым на короткое время предъявляли набор из 6 согласных (например, RLBKSJ); когда буквы убирали, испытуемый должен был написать все 6 букв по порядку.

    Хотя вся процедура занимала всего секунду или две, испытуемые временами ошибались. В случае ошибок неверные буквы по звучанию были сходны с верными. В приведенном примере испытуемый мог написать RLTKSJ, заменив В («би») на сходную по звучанию Т («ти») (Conrad, 1964). Этот результат подтверждает, что испытуемые кодировали каждую букву акустически (например; «би» для буквы В), иногда теряя часть этого кода (от звука «би» сохранилась только часть «и») и заменяя его буквой, подходящей к оставшейся части кода («ти»). Это также объясняет, почему труднее вспомнить элементы по порядку, когда они акустически похожи (например, TBCGVE - «ти, би, си, джи, ви, и»), чем когда они акустически различны (RLTKSJ - «ар, эль, ти, кей, эс, джей»).

    Зрительное кодирование

    При необходимости мы также можем хранить вербальные элементы в виде зрительной репрезентации. Однако эксперименты показывают, что хотя мы можем пользоваться зрительным кодированием для вербального материала, этот код быстро угасает. В тех случаях, когда человеку нужно запомнить невербальную информацию (например, изображения, которые трудно описать, а следовательно, трудно повторять фонологически), важную роль играет зрительное кодирование. Многие из нас могут удерживать зрительный образ в кратковременной памяти, но мало кто способен удерживать образы почти с фотографической точностью. Эта способность имеется в основном у детей. Такие дети могут быстро посмотреть на картинку и, когда ее убирают, все еще ощущать ее образ перед своими глазами. Они могут удерживать этот образ минутами, и когда их спрашивают о картинке, они воспроизводят множество деталей, например количество полосок на хвосте у кота (рис. 8.2). Такие дети, видимо, считывают детали непосредственно с эйдетического образа (Haber, 1969). Однако устойчивые эйдетические образы очень редки. Некоторые исследования с детьми показывают, что только около 5% из них сообщают о наличии долго длящихся образов с четкими деталями. Кроме того, когда критерии обладания действительно фотографическими образами ужесточаются - например, в них включают требование читать мысленно представляемую страницу снизу вверх так же легко, как и сверху вниз, - частота встречаемости эйдетических образов становится совсем маленькой, даже среди детей (Haber, 1979). Таким образом, зрительный код в кратковременной памяти - это что-то вроде фотографического отпечатка.

    Рис. 8.2. Тесты для эйдетического образа. Эта тестовая картинка в течение 30 секунд предъявлялась детям из начальной школы. Когда картинку убрали, один мальчик разглядел в ее эйдетическом образе «около 14» полосок на хвосте у кота. Это рисунок Марджори Торри к «Алисе в стране чудес» в сокращенном варианте Джозетт Франк.

    ​Две системы кратковременной памяти

    Существование и акустических и зрительных кодов привело исследователей к мнению, что кратковременная память состоит из двух хранилищ, или буферов. Один буфер - акустический, на короткое время сохраняющий информацию в акустических кодах; второе хранилище - зрительно-пространственный буфер, на короткое время сохраняющий информацию в зрительных или пространственных кодах (Baddeley, 1986). Некоторые недавние исследования с использованием сканеров мозга показывают, что работа этих двух буферов опосредуется различными мозговыми структурами.

    В одном эксперименте испытуемые в каждой пробе видели последовательность букв, в которой название и положение буквы менялись от элемента к элементу (рис. 8.3). В некоторых пробах испытуемым надо было обращать внимание только на название буквы, и перед ними ставилась задача определить, совпадает ли каждая предъявляемая буква с той, что предъявлялась на три буквы раньше в этой последовательности. В других попытках испытуемым надо было обращать внимание только на пространственное положение букв, а задача заключалась в том, чтобы определить, совпадает ли положение каждой предъявляемой буквы с положением буквы, предъявленной на три позиции раньше (рис. 8.3). Таким образом, во всех случаях стимулы были одинаковыми, а менялся вид информации, хранимой испытуемыми, - это была либо вербальная (название буквы), либо пространственная (расположение буквы) информация. Преположительно, вербальная информация хранится в акустическом буфере, а пространственная - в зрительно-пространственном буфере. В акустических и пространственных пробах активность мозга замерялась при помощи ПЭТ-сканера. Результаты показали, что, грубо говоря, эти два буфера находятся в различных полушариях. Когда испытуемым надо было хранить вербальную информацию (акустический буфер), большая часть активности мозга приходилась на левое полушарие; а когда им надо было хранить пространственную информацию (зрительно-пространственный буфер), активность мозга была больше в правом полушарии.

    Рис. 8.3. Эксперимент с акустическим и зрительным буферами. Испытуемым надо было решить, совпадает ли каждый предъявляемый элемент с тем, что предъявлялся в этой последовательности тремя позициями раньше. В верхней части рисунка показана типичная последовательность событий, когда испытуемый должен был обращать внимание только на название буквы, и реакции в ответ на предъявление каждого элемента. В нижней части рисунка показаны пробы, в которых испытуемый должен был обращать внимание только на положение буквы, и реакции в ответ на предъявление каждого элемента (по: Smith et al., 1995).

    Видимо, эти два буфера являются отдельными системами (Smith et al, 1996). Эти результаты не удивительны, учитывая тенденцию мозга к специализации полушарий, рассмотренную в главе 2.

    Хранение

    Пожалуй, самое примечательное в кратковременной памяти -- это ее очень ограниченный объем. В среднем его предел составляет семь элементов плюс-минус два (7 ± 2). Некоторые люди могут хранить всего пять элементов; некоторые удерживают целых девять. Может казаться странным, что такое точное число приводится для всех людей, хотя ясно, что индивиды очень различаются по возможностям памяти. Однако эти различия относятся прежде всего к долговременной памяти. Кратковременная память у большинства взрослых имеет объем 7 ± 2 элементов. Это постоянство было известно с первых дней существования экспериментальной психологии. Герман Эббингауз, начавший экспериментальное изучение памяти в 1885 году, представил данные, по которым объем его кратковременной памяти составил 7 элементов. Почти 70 лет спустя эта константа так поразила Джорджа Миллера (Miller, 1956), что он назвал ее «магической семеркой», и сегодня мы знаем, что этот предел существует и в западных, и в незападных культурах (Yu et al., 1985).

    Психологи определили это число, предъявляя испытуемым различные бессмысленные последовательности элементов (цифр, букв, слов) с задачей последующего воспроизведения их по порядку. Элементы предъявлялись быстро, и у испытуемого не было времени связать их с информацией, хранящейся в долговременной памяти; следовательно, количество воспроизведенных элементов отражает только объем хранения кратковременной памяти. В первоначальных пробах испытуемым надо было воспроизвести всего несколько элементов, скажем, 3-4 цифры, что было нетрудно. Затем количество цифр с каждой пробой возрастало, пока экспериментатор не определял максимальное их количество, которое испытуемый может воспроизвести в правильном порядке. Это максимальное число (почти всегда находящееся между 5 и 9) и есть объем памяти для данного испытуемого. Это настолько простая задача, что вы легко можете попытаться выполнить ее сами. В следующий раз, когда вы будете просматривать список имен (телефонную книгу офиса или университета, например), прочитайте список один раз, затем отвернитесь и проверьте, сколько имен вы можете воспроизвести по порядку. Вероятнее всего, от пяти до девяти.

    Укрупнение

    Как мы только что отметили, процедура определения объема памяти не позволяет испытуемым соотносить запоминаемые элементы с информацией в долговременной памяти. Когда такое соотнесение возможно, показатели испытуемых в задаче определения объема существенно меняются.

    Чтобы проиллюстрировать это изменение, давайте представим, что вам предъявили буквенную последовательность SRUOYYLERECNIS. Поскольку объем вашей памяти равен 7 ± 2, вы не сможете повторить всю эту последовательность из 14 букв. Но если вы заметите, что эти буквы составляют фразу SINCERELY YOURS (англ. «Искренне Ваш» - стандартное окончание письма. - Прим. перев.), прочитанную в обратном порядке, ваша задача станет легкой. Пользуясь этим знанием, вы уменьшаете количество элементов, которые должны находиться в кратковременной памяти, с 1,4 до 2 (два слова). Но откуда поступает эта информация о чтении букв? Конечно, из долговременной памяти, где хранится информация о словах. Так вы можете использовать долговременную память для перекодирования нового материала в более крупные значимые единицы и затем хранить их в кратковременной памяти. Такие единицы называют блоками, а емкость кратковременной памяти лучше всего выражается числом 7 ± 2 блока (Miller, 1956). Объединение в блоки может производиться и с числами. Последовательность 149-2177-619-96 превышает допустимый объем, но последовательность 1492-1776-1996 (1492 год - открытие Америки, 1776 - принятие Декларации Независимости, - 1996 (год) - Прим. перев.) вполне в него укладывается. Общий принцип состоит в том, что возможности кратковременной памяти можно расширить, перегруппируя последовательности букв и цифр в такие единицы, которые можно найти в долговременной -памяти (Bower & Springston, 1970).

    Забывание

    Мы можем удерживать в кратковременной памяти до 7 элементов, но в большинстве случаев они вскоре забудутся. Забывание происходит или потому, что элементы угасают со временем, или потому, что они вытесняются новыми элементами.

    Информация может со временем просто распадаться. О репрезентации в памяти элемента можно сказать, что это - след, угасающий за несколько секунд. Одно из лучших этому подтверждений состоит в том, что объем кратковременной памяти на слова уменьшается, когда они становятся длиннее: например, для таких длинных слов, как «калькулятор» или «антициклон», объем будет меньше, чем для таких коротких слов, как «ряса» или «скамья» (попробуйте произнести их сами, чтобы почувствовать различие в длительности). Этот эффект можно объяснить тем, что по мере предъявления слов мы произносим их про себя, и чем больше это требует времени, тем вероятнее, что некоторые следы слов угаснут прежде, чем их можно будет воспроизвести (Baddeley, Thompson & Buchanan, 1975).

    Другая главная причина забывания в кратковременной памяти - вытеснение старых элементов новыми. Понятие вытеснения согласуется с фиксированным объемом кратковременной памяти.

    Пребывание в кратковременной памяти можно сравнить с состоянием активации. Чем больше элементов мы пытаемся сохранить активными, тем меньше активации придется на каждый из них. По-видимому, только около семи элементов можно одновременно удерживать на таком уровне активации, который обеспечивает их воспроизведение. После активации семи элементов активация для нового элемента должна быть вычтена у ранее предъявленных элементов; следовательно, активация этих последних может упасть ниже критического уровня, необходимого для воспроизведения (Anderson, 1983).

    Воспроизведение

    Теперь снова представим себе содержимое кратковременной памяти как активную часть сознания. Интуиция подсказывает, что доступ к такой информации - немедленный. До нее не нужно докапываться; она прямо Здесь. Тогда воспроизведение не должно бы зависеть от числа элементов, входящих в сознание. Но здесь интуиция нас подвела.

    Согласно экспериментальным данным, чем больше элементов находится в кратковременной памяти, тем медленнее происходит воспроизведение. Это подтверждается в экспериментах, типовой вариант которых был предложен Стернбергом (Sternberg, 1966). В каждой пробе такого эксперимента испытуемому показывают набор цифр (он называется запоминаемым списком), который он должен какое-то время удерживать в кратковременной памяти; испытуемому легко это сделать, поскольку каждый список содержит от одной до шести цифр. Затем этот список убирают из виду и предъявляют тестовую цифру.

    Рис. 8.4. Воспроизведение как процесс поиска. Время принятия решения возрастает прямо пропорционально количеству элементов, находящихся в кратковременной памяти. Светлыми кружками показаны ответы «да», темными - ответы «нет». Время принятия тех и других решений расположено вдоль прямой линии. Поскольку время принятия решения очень мало, для его измерения требуется оборудование, обладающее миллисекундной точностью (до тысячных долей секунды) (по: Sternberg, 1966).

    Испытуемый должен решить, была ли тестовая цифра в списке. Например, если список содержал цифры 3 6 1, а тестовая цифра была 6, то испытуемый должен ответить «да»; если список тот же, но тестовая цифра - 2, испытуемый должен ответить «нет». В этой задаче испытуемые редко ошибаются; представляет, однако, интерес время принятия решения, определяемое как время между предъявлением тестовой цифры и моментом, когда испытуемый нажал на кнопку «да» или «нет». На рис. 8.4 приведены результаты такого эксперимента, показывающие, что время решения возрастает пропорционально длине запоминаемого списка. Эти результаты примечательны тем, что времена реакции расположены вдоль прямой линии. Это означает, что каждый дополнительный элемент в кратковременной памяти увеличивает время воспроизведения на одну и ту же величину - примерно на 40 миллисекунд, т. е. на 1/25 секунды. Те же результаты были получены, когда в качестве элементов использовались буквы, слова, звуки или изображения человеческих лиц (Sternberg, 1975). Эти результаты привели некоторых исследователей к предположению, что для воспроизведения необходимо провести поиск в кратковременной памяти, во время которого элементы проверяются по одному. Вероятно, этот последовательный поиск в кратковременной памяти происходит со скоростью 1 элемент за 40 миллисекунд - слишком быстро, чтобы человек мог осознавать это (Sternberg, 1966). Однако если мы говорим, что кратковременная память - это состояние активации, мы должны иначе интерпретировать эти результаты. Можно предположить, что для воспроизведения элемента из кратковременной памяти нужно, чтобы его активация достигла критического уровня. То есть человек решает, что данный тестовый элемент находится в его кратковременной памяти, если репрезентация этого элемента превышает критический уровень активации, и, чем больше элементов находится в кратковременной памяти, тем ниже активация каждого из них (Monsel, 1979). Было показано, что такие активационные модели точно предсказывают многие особенности воспроизведения из кратковременной памяти (McElree & Doesher, 1989).

    Кратковременная память и мышление

    Кратковременная память играет важную роль в мышлении. Сознательно пытаясь решить задачу, мы часто пользуемся кратковременной памятью как мысленным рабочим пространством: используем ее для хранения элементов задачи, а также информации из долговременной памяти, существенной для ее решения. Для иллюстрации рассмотрим, как происходит умножение в уме 35 х 8. Кратковременная память нужна для хранения числовых данных (35 и 8), содержания выполняемой операции (умножения) и арифметических фактов, т. е. что 8 х 5 = 40 и 8 х 3 = 24. Неудивительно, что вычисления в уме заметно затрудняются, когда надо помнить одновременно несколько слов или чисел; попробуйте проделать указанное умножение в уме, помня одновременно номер телефона 745-1739 (Baddeley & Hitch, 1974). Учитывая роль кратковременной памяти в умственных вычислениях, исследователи все чаще называют ее «рабочей памятью», представляя ее как своего рода меловую доску, на которой разум проводит свои вычисления и где он размещает промежуточные результаты для их дальнейшего использования (Baddeley, 1986).

    В других исследованиях было показано, что кратковременная память нужна не только для операций над числами, но и для целой гаммы других сложных задач. Среди них - геометрические аналогии, используемые иногда в тестах на интеллект (см., напр.: Ravens, 1955). Пример геометрической аналогии приведен на рис. 8.5. Попробуйте выполнить этот тест, чтобы получить интуитивное представление о роли рабочей памяти в решении задач. Вы заметите, что рабочая память нужна для хранения: 1) сходств и различий, найденных вами среди фигур ряда, и 2) правил, которые вы применяете для объяснения этих сходств и различий и которые затем используете для выбора правильного ответа. Оказывается, что чем больше объем рабочей памяти, тем лучше человек справляется с подобными задачами (несмотря на то что люди относительно слабо различаются по ее объему). Кроме того, когда решение людьми задач, подобных приведенной на рис. 8.5, моделируют на компьютере, одним из важнейших параметров, определяющих, насколько хороша программа, является величина рабочей памяти, заданной программистом. Видимо, нет сомнений, что трудность решения многих сложных задач частично связана с той нагрузкой, которая возлагается при этом на рабочую память (Carpenter, Just & Shell, 1990).

    Рис. 8.5. Пример геометрической аналогии. Задача состоит в том, чтобы изучить фигуры, составляющие матрицу 3x3, нижний правый элемент которой отсутствует, и определить, какой из восьми вариантов, показанных внизу, подходит в качестве недостающего. Чтобы сделать это, надо просмотреть каждый ряд и определить, по какому закону меняются фигуры, и сделать то же самое для каждой колонки (по: Carpenter, Just & Shell, 1990).

    Рабочая память играет также решающую роль в таких языковых процессах, как участие в диалоге или чтение текста. Когда задачей чтения является понимание, мы часто сознательно связываем новые предложения с ранее прочитанным материалом. Это связывание нового со старым, вероятно, происходит в рабочей памяти, поскольку люди, отличающиеся большим объемом рабочей памяти, получают более высокие оценки по тестам на усвоение прочитанного материала (Daneman & Carpenter, 1980; Just & Carpenter, 1992).

    Перенос из кратковременной памяти в долговременную

    Как мы узнали из предыдущего раздела, у кратковременной памяти две основные функции. Прежде всего, она хранит материал, необходимый на короткое время, и служит рабочим пространством для вычислений в уме. Другая ее возможная функция заключается в том, что она служит промежуточной станцией на пути в долговременную память. То есть пока информация кодируется или передается в долговременную память, она может размещаться в кратковременной (Raaijmakers, 1992; Atkinson & Shiffrin, 1971). Хотя существуют различные способы такого переноса, одним из наиболее изученных является повторение (репетиция), сознательное повторение информации, хранящейся в кратковременной памяти.

    Повторение элемента не только удерживает его в кратковременной памяти, но и заставляет его перейти в долговременную память. Таким образом, термин «сохранительное повторение» используется для обозначения активных усилий по удержанию информации в рабочей памяти, а термин «развивающее повторение» служит для обозначения усилий по кодированию информации для ее переноса в долговременную память.

    Наилучшее подтверждение этим идеям было получено в экспериментах со свободным воспроизведением. В них испытуемым сначала показывали слова, выбираемые из списка, например 40 бессвязных слов; слова предъявлялись по одному. После предъявления всех слов испытуемые должны были немедленно их вспомнить в любом порядке (отсюда название «свободное воспроизведение»). Результаты одного такого эксперимента показаны на рис. 8.6. На нем вероятность верного воспроизведения слова показана в зависимости от порядкового номера элемента в списке. Левая часть кривой относится к первым нескольким элементам, а правая часть - к последним.

    Предполагается, что во время воспроизведения последние несколько предъявленных слов еще находятся в кратковременной памяти, тогда как остальные слова - в долговременной. Значит, следует ожидать высокой вероятности воспроизведения последних нескольких слов, поскольку из кратковременной памяти элементы воспроизвести легко. На рис. 8.6 видно, что так оно и есть. Но воспроизведение первых нескольких элементов тоже довольно хорошее. Почему так? Именно здесь в игру вступает повторение. Когда первые слова предъявлены, они вводятся в кратковременную память и повторяются. Поскольку кратковременная память еще почти не загружена, они повторяются часто и поэтому передаются в долговременную память.


    Рис. 8.6. Результаты эксперимента на свободное воспроизведение. Вероятность воспроизведения меняется в зависимости от порядкового номера элемента в списке, причем наибольшая вероятность - примерно у последних пяти элементов, за ней по величине идет вероятность воспроизведения нескольких первых элементов, а наименьшая вероятность у элементов из середины списка. Воспроизведение нескольких последних элементов основано на кратковременной памяти, а остальных - на долговременной (по: Glanzer, 1972; Murdock, 1962).

    По мере предъявления остальных элементов кратковременная память быстро переполняется и возможность для повторения каждого данного элемента и переноса его в долговременную память значительно уменьшается. Поэтому только у первых нескольких предъявленных элементов есть дополнительная возможность перехода в долговременную память, и вот почему они позднее так хорошо из нее воспроизводятся.

    Таким образом, кратковременная память является системой, способной удерживать 7 ± 2 блока информации либо в фонологическом (акустическом), либо в визуальном формате. Информация из кратковременной памяти теряется вследствие угасания либо замещения и извлекается (воспроизводится) из этой системы посредством процесса, на функционирование которого оказывает влияние общее количество элементов памяти, активизированных в каждый конкретный момент времени. Наконец, кратковременная память используется для хранения и переработки информации, необходимой для решения задач, а потому играет важную роль в процессе мышления.

    Долговременная память

    Долговременная память необходима, когда информацию нужно удерживать или в течение всего нескольких минут (например, замечание в разговоре, сделанное ранее), или на всем протяжении жизни (например, воспоминания взрослого о детстве). В экспериментах с долговременной памятью психологи в общем изучали забывание по истечении нескольких минут, часов или недель, но было очень мало исследований, связанных с периодами длиной в годы и тем более десятилетия. Эксперименты, охватывающие многолетний период, часто включают воспроизведение личных переживаний (то, что называют автобиографической памятью), а не лабораторных материалов. В дальнейшем мы не будем различать исследования, использующие тот или иной материал, поскольку в них отразились во многом одни и те же принципы.